Vehicle Innovation Day: Military use of AV and CV

SOUTHWEST RESEARCH INSTITUTE®

Steven W. Dellenback, Ph.D., PMP
Vice President R&D
Intelligent Systems Division

Why is the Military (off-road) Perspective Important? Problem: How Do You "Finish" The Drive...

- Efforts at Automated Driving have focused on:
 - Paved roads
 - Pavement markings / traffic control devices
- To finish the drive in many places you need:
 - Ability to navigate roads that are not paved or mapped (63% of world wide roads paved, 65% in the US)
 - Environments with lots of vegetation and no stripes/signs

When AVs arrive at their destination...

On average approximately 63% of the roadways in the world are paved:

Selected Countries	Total Kilometers	Paved Kms	Unpaved Kms	Percent Paved
Brazil	1,580,964	212,798	1,368,166	13.5%
Canada	1,042,300	415,600	626,700	39.9%
China	4,106,387	3,453,890	652,497	84.1%
Indonesia	496,607	283,102	213,505	57.0%
Japan	1,217,128	988,536	228,592	81.2%
Mexico	377,660	137,544	240,116	36.4%
Russia	1,283,387	927,721	355,666	72.3%
United States	6,586,610	4,304,715	2,281,895	65.4%
Worldwide Total:	46,771,989	29,364,673	17,407,316	62.8%

- What will happen when an AV needs to leave a highly structured road environment and deliver the riders to the "door"?
 - In the US this will happen very frequently

Rural Roads

Very difficult to pre-drive and map

Major objects change each season

 Road surface varies widely based on season and maintenance practices

Select States (kilometers)	Total	Paved	Unpaved	% Unpaved
Texas	512,656	357,499	155,157	30%
California	273,822	160,797	113,026	41%
Michigan	195,426	99,667	95,759	49%
Nebraska	154,802	82,499	72,303	47%
Alaska	25,088	4,857	20,231	81%
Total US:	6,584,739	4,214,233	2,370,506	36%

Unusual Road conditions

Negative Obstacles

Water with unknown consequences

 Short term construction detours that utilize alternative road materials and limited to no lane markings (use barrels / cones)

State of the Practice (agricultural/mining): John Deere / Komatsu Source: Komatsu

- - Constrained environment

- Komatsu
 - Fixed route
 - Very dirty conditions

State of the Practice (military):

(mules and support tools)

- Squad MissionSupport System(SSMS)
 - Active sensor technology
 - Carry loads over difficult terrain

Source: Lockheed Martin

State of the Practice (military):

(small bots)

- Many variants developed
- Some variants deployed
- Challenges:
 - Maintenance issues

State of the Practice (military): AMAS (LM)

Introduced "A-Kit" (autonomy) and "B-Kit (by wire)

SUMET EO-Only Perception Introduced "passive sensors"

Material Classification

Cost Map and Path Planners

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

10

Marine Corps SUMET Program

Office of Naval Research – Code 30 Ground Vehicle Autonomy Program: Small Unit Mobility Enhancement Technology (SUMET)

SUMET v2.0 Experimentation

SwRI – San Antonio, TX 29 November 2012

Army: DSAT (Dismounted Solider Autonomy Tools) ATEC Tested and Deployed System

SCIENCE, APPLIED TECHNOLOGY.

DSAT Capability Video

Lockheed Martin K-MAX

- Marine Corps program
- Capable of delivering a full 6,000 lb of cargo at sea level and more than 4,000 lb at an altitude of 15,000 feet.
- First mission in Afghanistan on December 17, 2011.
- Deployment ended 2014

Source: Lockheed Martin

Current Programs

RTK (Robotics Technology Kernel)
Provides: platform, non-proprietary AV

AGR (Autonomous Ground Supply)

Manned Leader, automated follower(s)

ICED SCIENCE. APPLIED TECHNOLOGY.

Current Programs – con't

//UNCLASSIFIED//
DISTRIBUTION STATEMENT A:
Approved for public release

TARDEC 6501 E. Eleven Mile Rd. Warren, MI 48397 Wingman

Tracked Vehicle Autonomy (program in the initial stages)

Questions?

Steve Dellenback sdellenback@swri.org +1.210.522.3914

ADVANCED SCIENCE. APPLIED TECHNOLOGY.